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Abstract: In this paper, we investigate an inverse differential game approach to modelling the
mid-air collision avoidance behaviours of birds. We propose a general method for estimating
the cost-functional parameters of a noncooperative differential game from partial-state mea-
surements of an open-loop Nash equilibrium. We apply the method to data of birds performing
mid-air collision avoidance. Our analysis suggests that a differential game model provides a close
description of the observed bird behaviours, and could provide new insights for the design of
collision avoidance strategies for unmanned aircraft.
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1. INTRODUCTION

Game theory provides a variety of mathematical models
for describing the behaviour of decision makers (or players)
in conflict situations spanning fields as diverse as engi-
neering (Basar and Olsder, 1999; Isaacs, 1965; Konstan-
takopoulos et al., 2016), economics (Arcidiacono et al.,
2016; Bajari et al., 2007), and ecology (Hansen, 1986).
Noncooperative differential games are a specialised class of
game-theoretic models capable of describing the behaviour
of multiple decision makers. These decision makers aim to
achieve their individual objectives by interacting in real-
time through a process that evolves according to a system
of differential equations (Basar and Olsder, 1999; Isaacs,
1965). Noncooperative differential games have a long his-
tory as a tool for designing optimal collision avoidance
manoeuvres for vehicles (Mylvaganam et al., 2017; Isaacs,
1965; Basar and Olsder, 1999). However, despite their use
in the design of vehicle collision avoidance strategies, there
appear to be few, if any, differential game models of col-
lision avoidance behaviours in biological species. Inspired
by recent advances in inverse techniques for estimating
differential game models, in this paper we investigate an
inverse differential game approach for modelling the mid-
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air collision avoidance behaviours of budgerigars (Melop-
sittacus undulatus).

Collision avoidance behaviours exhibited by biological
species have the potential to inform the design of collision
avoidance strategies for autonomous vehicles. Indeed, con-
siderable effort has been directed towards studying the be-
haviours of animals in potential collision scenarios (Brace
et al., 2016; Schiffner et al., 2016; Boardman et al., 2013;
Karaman and Frazzoli, 2012). For example, Boardman
et al. (2013) and Brace et al. (2016) examine the suitability
of “collision cone” or effort-minimising approaches as mod-
els for the collision avoidance behaviours of bats (Myotis
velifer), birds (Hirundo rustica), and fish (Danio aequipin-
natus) when they are in a group. Most recently, Schiffner
et al. (2016) examined the preferences of budgerigars to
turn left or right, and climb or descend in order to avoid
collisions in head-on encounters with other budgerigars.
Nevertheless, there appear to be few, if any, examples of
the use of differential games to quantitatively model the
collision avoidance behaviours of biological species.

The scarcity of differential game models in the study of
biological collision avoidance behaviours may in part be
due to the difficulty in estimating differential games from
experimental data. Indeed, the inverse differential game
problem of recovering the objectives of players from Nash
equilibrium solutions has only recently received attention
(Molloy et al., 2017a; Rothfußet al., 2017), despite the



popularity of similar inverse optimal control, inverse static
game, and inverse dynamic game problems (Mombaur
et al., 2010; Molloy et al., 2016; Johnson et al., 2013;
Konstantakopoulos et al., 2016; Arcidiacono et al., 2016;
Tsai et al., 2016; Molloy et al., 2017b). Existing inverse
differential game techniques are therefore in a state of
infancy and unable to explicitly handle sampled noise-
corrupted partial-state measurements of the Nash equi-
librium trajectories. Here, we shall extend previous treat-
ments of inverse differential games to propose a method of
inverse differential games that explicitly handles partial-
state measurements of the observed Nash equilibrium. Our
method is similar in spirit to the bilevel method of inverse
optimal control proposed in (Mombaur et al., 2010) for
studying human locomotion, and the nested inverse differ-
ential game method proposed in (Molloy et al., 2017a).

The main contributions of this paper are: (i) The pro-
posal of a new approach to inverse differential games for
estimating the cost-functional parameters of two-player
differential games from partial-state measurements of an
open-loop Nash equilibrium; and, (ii) The proposal of
a differential game model of mid-air collision avoidance
behaviour in birds. These contributions are coupled since
we exploit our proposed inverse differential game approach
to estimate the unknown parameters of our differential
game model of bird mid-air collision avoidance behaviour.
We focus on open-loop Nash equilibria since they provide
a bound on the achievable value of a game and can cor-
respond to open-loop realisations of feedback strategies
(cf. (Basar and Olsder, 1999)).

The rest of this paper is structured as follows. In Section
2 we formulate the general problem of inverse differen-
tial games with an open-loop information structure and
partial-state measurements. In Section 3 we propose our
general method of inverse differential games and discuss its
implementation. In Section 4 we propose our differential
game model of bird mid-air collision avoidance and spe-
cialise our method of inverse differential games to estimate
its parameters. We offer conclusions in Section 5.

2. PROBLEM FORMULATION

Let us consider a noncooperative continuous-time two
player differential game with state process

ẋ(t) = f (x(t), u1(t), u2(t)) , x(0) = x̄ ∈ Rn (1)

for t ∈ [0, T ] where f(·, ·, ·) is a possibly nonlinear function,
and u1(·) : [0, T ] 7→ Rm1 and u2(·) : [0, T ] 7→ Rm2 are the
controls selected by Players 1 and 2, respectively. Let us
also define the cost functional for Player i as

Ji (x, u1, u2, θi)

= hi (x(T ), θi) +

∫ T

0

gi (x(t), u1(t), u2(t), θi) dt
(2)

where hi (·, ·) : Rn × Θi 7→ R is a terminal cost function
penalising the terminal state x(T ), and gi (·, ·, ·, ·) : Rn ×
Rm1 × Rm2 × Θi 7→ R is a stage-cost function penalising
the states and player controls. We assume that both
the terminal and state cost functions for each player are
parametrised by the (possibly unknown) vectors θ∗i ∈ Θi

where Θi ⊂ RMi . We further assume that the players seek
open-loop Nash equilibrium control trajectories uN∗1 and

uN∗2 that solve the following two (coupled) optimal control
problems (Basar and Olsder, 1999, p. 266):

inf
u1

J1

(
xN∗, u1, u

N∗
2 , θ∗1

)
s.t. ẋN∗(t) = f

(
xN∗(t), u1(t), uN∗2 (t)

)
xN (0) = x̄

(3)

and
inf
u2

J2

(
xN∗, uN∗1 , u2, θ

∗
2

)
s.t. ẋN∗(t) = f

(
xN∗(t), uN∗1 (t), u2(t)

)
xN (0) = x̄.

(4)

Here, we let xN∗ denote the state trajectory associated
with a pair of open-loop Nash equilibrium control trajec-
tories uN∗1 and uN∗2 .

In this paper, we consider the inverse differential game
problem of estimating the parameters θ∗1 and θ∗2 of the
player cost functionals from noise-corrupted partial-state
measurements of the open-loop Nash equilibrium state
trajectory xN∗ given the functions f(·, ·, ·), gi(·, ·, ·, ·), and
hi(·, ·). We assume that the noise-corrupted partial-state
measurements are of the form

y(tk) = CxN∗(tk) + wk (5)

for k = 1, . . . ,K where 0 = t1 < t2 < . . . < tK = T
are the sampling times, wk ∈ R` for k = 1, . . . ,K is a
zero-mean (possibly non-Gaussian) white noise process,
and C ∈ R`×n is a matrix selecting states from xN∗(t).
We shall use our proposed method of inverse differential
games to estimate the parameters of a differential game
model of mid-air collision avoidance behaviour in birds.

3. INVERSE DIFFERENTIAL GAMES WITH
PARTIAL STATE MEASUREMENTS

In this section, we present our proposed method of inverse
differential games. We also discuss the implementation of
our method for classes of differential games that can be
solved using conditions for open-loop Nash equilibria.

3.1 Proposed Method of Inverse Differential Games

To propose our method of inverse differential games, let us
define the functional

JT (x, y) ,
K∑
k=1

‖Cx(tk)− y(tk)‖2. (6)

This functional quantifies the squared-error between a can-
didate state trajectory x and the sequence of partial-state
noise-corrupted measurements y. Our proposed method of
inverse differential games seeks to estimate the player cost-
functional parameters θ∗1 and θ∗2 together with the initial

state x∗(0) by identifying estimates θ̂1, θ̂2, and x̂ that solve
the optimisation problem

inf
θ1,θ2,x̄

JT
(
xN , y

)
(7)

subject to

ẋN (t) = f
(
xN (t), uN1 (t), uN2 (t)

)
xN (0) = x̄

J1

(
xN , uN1 , u

N
2 , θ1

)
≤ J1

(
xN , u1, u

N
2 , θ1

)
∀u1 ∈ Rm1

J2

(
xN , uN1 , u

N
2 , θ2

)
≤ J2

(
xN , uN1 , u2, θ2

)
∀u2 ∈ Rm2

θi ∈ Θi, i = 1, 2



where we have used ui ∈ Rmi to denote that ui(t) ∈ Rmi

for all t ∈ [0, T ].

The optimisation problem (7) involves an upper level of
optimisation over the parameters and initial state, and
a lower level of optimisation in the constraints to iden-
tify the open-loop Nash equilibrium corresponding to the
parameters selected in the upper level optimisation. The
initial state x̄ needs to be estimated as part of the upper
level optimisation because the measurements (5) are noisy
and contain only partial state information whilst the lower
level of optimisation in the constraints requires complete-
state information. Solving the optimisation problem (7)
therefore involves the nested solution of the (full-state
information) noncooperative differential game (1) and (2).
Since the solution of noncooperative differential games for
open-loop Nash equilibria is nontrivial in general, our pro-
posed method may not have an efficient analytic solution,
and its implementation may be nontrivial.

Remark 3.1. We may also exploit measurements of the
player open-loop Nash equilibrium control trajectories in
our method by solving (7) with the augmented functional

JT (x, y) +

2∑
i=1

K∑
k=1

‖ui(tk)− zi(tk)‖2

where

zi(tk) = uN∗i + vk

for k = 1, . . . ,K are the control measurements corrupted
by the noise process vk. Our proposed method (7) can also
be generalised to inverse differential game problems with
more than two players. However, each additional player
will increase the computational complexity of our proposed
method (7) superlinearly by increasing the number of
variables to be optimised in the upper level of optimisa-
tion whilst also increasing the complexity of identifying
equilibria in the lower level of optimisation.

3.2 Implementation of Proposed Method

We propose implementing our method of inverse differ-
ential games (7) by using a gradient-based interior point
optimisation routine to solve the upper level optimisation.
Inverse optimal control methods (or one-player inverse
differential game methods) have previously been imple-
mented with derivative-free numerical optimisation rou-
tines to solve similar upper-level problems (cf. (Mombaur
et al., 2010)). However, we have found that derivative-
free routines perform poorly compared to gradient-based
routines in problems with smooth parameterisations of the
player cost functionals.

We also propose implementing our method (7) by replacing
its lower level optimisation with the simpler problem of
finding trajectories xN , uN1 , and uN2 that satisfy the nec-
essary conditions for existence of open-loop Nash equilibria
given by Theorem 6.11 of Basar and Olsder (1999). In the
case of linear-quadratic differential games (i.e., games with
linear dynamics (1) and quadratic player cost-functionals
Ji) these necessary conditions are also sufficient. However,
in general the satisfaction of the necessary conditions will
yield trajectories xN , uN1 , and uN2 that are locally optimal
solutions to the coupled optimal control problems (3) and
(4). The use of necessary conditions thus allows us to find

cost-functional parameters under which the measurements
y may also be generated by local equilibria. Consideration
of local equilibria is particularly attractive when the mea-
surements y are from experimental demonstrations since it
allows for the possibility that the players may have played
sub-optimally or made mistakes in their demonstrations
(see (Levine and Koltun, 2012) for a discussion of this issue
in the closely related context of inverse optimal control).

The problem of finding trajectories xN , uN1 , and uN2 that
satisfy the necessary conditions for open-loop Nash equi-
libria is also simpler than solving the two coupled optimal
control problems (3) and (4) since it may be formulated
as a two-point boundary value problem. Here, we present
this two-point boundary value problem formulation under
the standard assumptions that the functions f (·, ·, ·) and
gi (·, ·, ·) are continuously differentiable in each of their
arguments. Let us define the Hamiltonian functions

Hi (λi(t), x(t), u1(t), u2(t), θi)

, gi (x(t), u1(t), u2(t), θi) + λ′i(t)f (x(t), u1(t), u2(t))

for i = 1, 2. We recall from Theorem 6.11 of Basar and
Olsder (1999) that if xN , uN1 , and uN2 constitute an open-
loop Nash equilibrium solution to the differential game (1)
and (2) for some θ∗i = θi ∈ Θi with i = 1, 2, then there
exist adjoint functions λi(·) : [0, T ] 7→ Rn satisfying the
differential equations

λ̇i(t) = −∇xHi

(
λi(t), x

N (t), uN1 (t), uN2 (t), θi
)

(8)

with terminal boundary condition

λ′i(T ) = −∇xhi (x(T ), θi)

for i = 1, 2. Furthermore, the player controls satisfy

∇ui
Hi

(
λi(t), x

N (t), uN1 (t), uN2 (t), θi
)

= 0 (9)

for i = 1, 2.

For many classes of differential games (involving linear-
quadratic games), we may rearrange (9) to write the open-
loop Nash equilibrium controls as

uNi (t) = ri
(
xN (t), λi(t), θi

)
where ri (·, ·) : Rn × Rn × Θi 7→ Rmi is a function
dependent on the partial derivatives of the dynamics and
player cost functions. Substitution of these expressions
for the control functions into the dynamics (1), and the
player adjoint differential equations (8) leads to a two-
point boundary problem in xN (t), λ1(t), λ2(t) with initial
conditions for the state xN (0) and terminal conditions
for the player adjoint variables λi(T ). We may solve this
two-point boundary value problem (e.g. using a shooting
method or a finite difference method) for a state trajectory
that satisfies the necessary conditions for an open-loop
Nash equilibrium with parameters θ1 and θ2, and initial
state x̄. These states may then be sampled to compute the
objective functional in (7).

We shall now exploit our proposed method of inverse
differential games to estimate a model of bird mid-air
collision avoidance from experimental data.

4. MODELLING BIRD MID-AIR COLLISION
AVOIDANCE BEHAVIOURS VIA INVERSE

DIFFERENTIAL GAMES

In this section, we propose a differential game model of
mid-air collision avoidance between two birds. We then use



our method of inverse differential games (7) to estimate the
parameters of the model from noise-corrupted partial-state
information collected in prior experiments.

4.1 Bird Mid-Air Collision Avoidance Experiments

In previous work, experiments were conducted in which
two budgerigars – Melopsittacus undulatus – were trained
to fly from opposite ends of an enclosed tunnel to pressure
them into a head-on encounter (Schiffner et al., 2016). The
tunnel was purpose built with height 2.40m, width 1.40m,
and length 21.6m. A total of 102 flights were recorded
using two synchronised video cameras. The videos of a
number of flights were manually processed to reconstruct
the 3D positions of each bird during the encounters. This
reconstruction was performed by manually labelling a
point on each bird’s body in each camera frame, and
then using camera calibration information to project the
points into 3D space. In total, this process yielded suitable
position data for the 7 flights (flights discarded included
those with large labelling errors due to the body points
being regularly occluded).

4.2 Proposed Differential Game Model

To model the bird behaviours in these experiments, let
xi(t) ∈ R6 for t ∈ [0, T ] be Bird i’s position and velocity
where the components

(
x1
i (t), x

2
i (t)

)
,
(
x3
i (t), x

4
i (t)

)
, and(

x5
i (t), x

6
i (t)

)
are the x, y, and z components of position

and velocity, respectively. We consider the position and
velocity of Bird i to evolve according to the kinematic
equations of motion

ẋi(t) = Āxi(t) + B̄ui(t), xi(0) = xi,0

for t ∈ [0, T ] where ui(t) ∈ R3 is the bird’s acceleration
vector, and the matrices Ā and B̄ are given by

Ā ,



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

 and B̄ ,



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

 .

We write the dynamics of the game as in (1) by letting

f (x(t), u1(t), u2(t)) = Ax(t) +B1u1(t) +B2u2(t) (10)

where

x(t) =

[
x1(t)

x2(t)

]
, A ,

[
Ā 0

0 Ā

]
, B1 ,

[
B̄

0

]
, and B2 ,

[
0

B̄

]
.

We hypothesise that:

H1) Each bird controls its acceleration ui(t) with the aim
of using minimal effort to avoid collisions and reach
a desired position by the terminal time T ; and,

H2) The birds perform noncooperative collision avoidance
and do not coordinate their controls.

We incorporate our first hypothesis H1 into our differential
game model by considering each bird to be minimising a
cost functional of the form (2) with:

(i) A quadratic terminal cost given by

hi (x(T ), θi) = (xi(T )− qi)′Qi (xi(T )− qi) , (11)

to model Bird i’s aim to reach a desired position
qi ∈ R3 by the terminal time T ; and,

(ii) A stage-cost function given by

gi (x, u1, u2, θi) = u′i(t)Riui(t) + δi (t) , (12)

to model Bird i’s aim to use minimal effort whilst
avoiding collisions.

The matrix Qi ∈ R3×3 in (11) is diagonal and positive
semi-definite. Similarly, the matrix Ri ∈ R3×3 in the
first term of (12) is diagonal and positive semi-definite to
penalise large accelerations ui(t). Finally, the second term
in (12) penalises close proximity to the other bird and is
defined as the (weighted) inverse distance

δi (t) , αi,1
(
αi,2∆2

x(t) + αi,3∆2
y(t) + αi,4∆2

z(t)
)−αi,5

where ∆2
x(t), ∆2

y(t), and ∆2
z(t) are the squared distances

between the birds at time t in the x, y, and z directions,
respectively, with the weights αi,j for 1 ≤ j ≤ 5 modelling
the bird’s potential preference to have different horizontal
and vertical separation distances.

We incorporate our second hypothesis H2 into our model
by considering each bird to be playing for a Nash equilib-
rium solution in which they have no incentive to unilat-
erally change their controls. We consider open-loop Nash
equilibria since we are interested in modelling encounters
between birds where mid-air collision is imminent and they
must take immediate action to avoid collision (i.e., there
is limited time to modify actions based on feedback). We
note that open-loop Nash equilibria can also correspond
to open-loop realisations of feedback strategies (cf. (Basar
and Olsder, 1999)). In our model, the bird trajectories are
generated with knowledge of the bird initial positions and
velocities and the parameters θ1 and θ2.

4.3 Parameter Estimation via Inverse Differential Games

Our proposed model of bird collision avoidance is of the
form of the differential games we considered in Sections
2 and 3. The parameters of our proposed model are the
diagonal elements of the matrices Ri and Qi, the weights
αi,1, . . . , αi,5, and the desired final positions qi. We collect
these parameters in the vectors

θi =
[
R11
i , R

22
i , R

33
i , Q

11
i , Q

22
i , Q

33
i , q

1
i ,

q2
i , q

3
i , αi,1, αi,2, αi,3, αi,4, αi,5

]′ ∈ R14

for i = 1, 2. We shall estimate these parameters θi from
the position measurements collected in the experiments
described in Section 4.1 using our proposed method of
inverse differential games (7). Under our proposed model
of mid-air collision avoidance, the position measurements
correspond to noise-corrupted partial-state measurements
of the bird open-loop Nash equilibrium trajectories xN∗.
That is, the position measurements satisfy (5) with

C =

[
C̄ 0

0 C̄

]
where C̄ =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 ,
and the noise wk is due labelling errors and inaccuracies
in the trajectory 3D reconstructions.

4.4 Results

We implemented our inverse differential game method (7)
as described in Section 3.2. The upper level optimisation



Table 1. Errors between the experimental po-
sition measurements and trajectories predicted
with our estimated differential game model.

Case No.
Root-Mean-Square Errors (mm)

Bird 1 Bird 2

3 25.8 41.4
5 33.7 71.9
13 8.33 10.5
15 17.1 23.3
17 8.11 15.6
27 35.9 26.8
33 26.1 16.4

in (7) was performed with the interior-point algorithm
implemented in MATLAB’s fmincon function, and the
lower level solution of the differential game via a two-point
boundary problem was achieved with the finite-difference
method implemented in MATLAB’s bvp4c function.

We applied our method of inverse differential games to
each of the 7 experimental flights. For each flight, we esti-
mated the parameters θ1 and θ2 as well as the initial states
x̄. We used these estimated initial states and parameters
to solve our proposed differential game model to generate
predicted open-loop Nash state trajectories xN . The root-
mean-square (RMS) errors between the predicted position
trajectories and the position measurements for each bird
and each flight are reported in Table 1.

From Table 1, we see that our differential game model
with parameters estimated using our proposed method of
inverse differential games (7) is able to generate predicted
position trajectories with a maximum RMS error of 7.19
cm. Furthermore, only two of the predicted position tra-
jectories (Bird 2 in Case No. 5 and Bird 2 in Case No.
3) have an RMS error greater than 3.59 cm. These two
cases are plotted in Fig. 1 (Case No. 3) and Fig. 2 (Case
No. 5). Visual inspection of Figs. 1 and 2 suggests that
despite Case No. 3 and Case No. 5 having the highest RMS
errors of our 7 cases, the predicted trajectories generated
by our estimated differential game model in these cases
still reasonably capture the dynamics in the data. The
trajectories predicted by our estimated differential game
model also provide a close visual match to the data in the
5 other experimental cases (as suggested by the lower RMS
errors in the other cases).

We now examine the contribution of the estimated termi-
nal hi(x(T ), θi), control u′i(t)Riui(t), and separation δi(t)
costs to the total value of the estimated cost-functionals
Ji
(
xN , uN1 , u

N
2 , θi

)
in Case No. 3 (we omit a full discussion

due to space). In Case No. 3, the estimated control and
separation costs account for 40% and 60%, respectively, of
Bird 1’s total cost, while the separation cost constitutes
100% of Bird 2’s total cost. The large separation cost
incurred by Bird 2 relative to its terminal and control costs
is due to it taking no avoidance action and reaching its final
position by flying in a straight line (as seen in Fig. 1). The
estimated parameters θ2 of our model capture Bird 2’s
preference to remain on a straight trajectory since they
penalise distance from the desired terminal position more
than close proximity to Bird 1 (i.e., the estimated terminal
cost parameters Q11

2 = 7.2, Q22
2 = 7.6, and Q33

2 = 21.1 are
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Fig. 1. Measured and predicted position trajectories of the
two birds in Case No. 3: (a) Isometric View, and (b)
Plan View. The x, y and z axes refer to positions
along the width, length and height of the tunnel,
respectively. Axis scales are not equal in (b).

large while the estimated separation parameter α2,5 = 1×
10−7 greatly lowers the cost of small separations).

5. CONCLUSION

We proposed a method of inverse differential games for
estimating the parameters of player cost-functionals in a
two-player noncooperative differential game from partial-
state measurements of an open-loop Nash equilibrium. We
applied our inverse differential game method to estimate
the parameters of a proposed noncooperative differential
game model of bird mid-air collision avoidance behaviours.
Our proposed differential game model with estimated
parameters provides a close representation of bird mid-
air collision avoidance behaviour observed in previous
experiments. The simplicity of our model also suggests
that it is likely to be implementable on autonomous
vehicles with limited sensing resources (e.g. vision sensors).
Future work will extend our inverse differential game
modelling approach to a larger collection of experimental
data.
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Fig. 2. Measured and predicted position trajectories of the
two birds in Case No. 5: (a) Isometric View, and (b)
Plan View. The x, y and z axes refer to positions
along the width, length and height of the tunnel,
respectively. Axis scales are not equal in (b).
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