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Abstract. Object detection and tracking are active and important re-
search areas in computer vision as well as neuroscience. Of particular
interest is the detection and tracking of small, poorly lit, deformable ob-
jects in the presence of sensor noise, and large changes in background
and foreground illumination. Such conditions are frequently encountered
when an animal moves in its natural environment, or in an experimen-
tal arena. The problems are exacerbated with the use of high-speed
video cameras as the exposure time for high-speed cameras is limited
by the frame rate, which limits the SNR. In this paper we present a set
of simple algorithms for detecting and tracking multiple, small, poorly
lit, deformable objects in environments that feature drastic changes in
background and foreground illumination, and poor signal-to-noise ra-
tios. These novel algorithms are shown to exhibit better performance
than currently available state-of-the art algorithms.
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1 Introduction

The use of Unmanned Aerial Vehicles (UAVs) is becoming more and more per-
vasive every year, rendering current ground-based control systems inadequate
in avoiding mid-air collisions. Most airborne creatures, such as birds or flying
insects, are extremely adept at avoiding collisions with their conspecifics or other
moving objects in their environments. How they achieve this is largely unknown.
In the past decade, we have started to gain insights into how birds and insects
control their flight speed [22], avoid obstacles [27] and perform smooth landings
[25]. This has drawn considerable attention from roboticists, who are challenged
with similar problems in the design of guidance systems for unmanned aerial
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vehicles. However, studying bird flight is not simple: firstly one has to be able
to collect accurate data from flying animals, with sufficient temporal and spatial
resolution. This is best achieved using high-speed cameras and stereo or multi-
camera setups. While high-speed cameras are now becoming more and more af-
fordable, algorithms for accurately tracking moving animals in video sequences
are scarce; and tracking flying animals, in particular birds, is by no means a
trivial task. Flying birds are one of the more challenging “objects” to detect,
partly because of their constantly changing shape [8, 9]. Tracking multiple birds
using high-speed cameras, and dealing with frequent occlusions, is an even more
challenging task. However, it is also the most feasible way of measuring the birds’
motion states and undertaking a quantitative study of their flight behavior. Con-
versely, the development of tracking systems that can handle such a challenging
task may provide robust techniques for tracking other, less challenging objects.

Robust object tracking is one of the most ubiquitous problems in computer
vision science. It has numerous applications, including automatic visual surveil-
lance, traffic monitoring, vehicle navigation, and motion-based object recognition
[32]. Despite the continued growth of interest in automated object tracking, the
problem continues to be extremely challenging due to factors such as variation
of illumination, deformation of non-rigid objects, occlusions, complex motion,
and the presence of background clutter. Tracking techniques can be broadly cat-
egorized into two approaches [28]: (1) tracking by detection and (2) temporal
tracking. In the first approach, objects are detected by spatially processing the
image to detect specific points or key features of the object [16, 33, 34], and then
subtracting the background [5, 13, 15, 18, 37, 38], using various techniques to seg-
ment the object from the background [11, 23]. In recent years, this approach has
been bolstered by using supervised learning [1, 14, 35], implemented in support
vector machines and neural networks [31, 14]. The second approach makes use
of the temporal information that is available in a video sequence to enhance the
accuracy and speed of detection.

In both approaches, the object states from the previous frame and the current
frame are usually passed on to either a Kalman filter (KF) [4, 10, 36] or a particle
filter (PF) [3, 21] to obtain the best estimate of the object’s location in the
current frame. However, the KF technique is a recursive process which performs
poorly when dealing with complex trajectories [28], and is only suitable for linear
state models with Gaussian noise. On the other hand, the PF technique models
the process stochastically and can successfully tackle nonlinear and non-Gaussian
tracking problems, but is computationally expensive.

Tracking a single object involves locating and tracking the position of the
object from frame to frame in the camera’s field of view. Tracking multiple birds
is more challenging, as it requires the simultaneous prediction of the movement
trajectory of each object, as well as correctly identifying each object in each
frame. Multiple object tracking (MOT) can be classified into two categories:
Offline MOT and Online MOT. Offline MOT takes the entire video as an input,
detects the object in each frame, and then constructs the most likely trajectory
of each object by associating the data collected over the entire video sequence.
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Online MOT, on the other hand, can only use information from the video frames
that have been acquired up to the current point in time, to predict the location
of each object in the current frame.

Most multi-object tracking algorithms are based on the use of an ‘appear-
ance’ model, specified either in the spatial domain or the frequency domain, to
detect the objects in each frame. When dealing with multiple, similar looking
objects (e.g. the birds in our case) an appearance model alone is not sufficient to
determine the identities of the individual objects accurately and reliably, because
the objects (e.g. birds) can have similar sizes and movement patterns, and can
frequently occlude one another in the image. Another major issue with track-
ing live objects is that most tracking algorithms rely on the assumption that the
temporal changes are smooth from frame to frame i.e. objects do not change their
position significantly between frames. A further problem with tracking multiple
objects is that the number of objects can vary from one frame to the next, for
example, when one object leaves the camera’s field of view, or another object
enters it. Thus, a robust MOT system needs to tackle all of the above challenges.

In this paper, we present a technique for detecting and tracking multiple
moving objects in environments that feature drastic changes in background and
foreground illumination. During long term tracking, moving objects can display
abrupt changes in motion, and also be subject to partial or complete occlusion.
When birds fly, they produce certain patterns of motion. These patterns often
display special spatial properties – for example, their flight path may be re-
stricted to certain regions of the experimental environment, or two birds may
strive to achieve a minimum separation when they fly past each other. These
structural and motion constraints can be exploited to construct data associations
that help preserve and disambiguate the identities of individual objects.

2 Related works

Most contemporary MOT systems rely on a detection framework for tracking
[24], instead of using background subtraction to overcome problems such as
cluttered and dynamic backgrounds. In fact, when it comes to tracking one kind
of object (e.g. human, bird or car), tracking by detection is more suitable, because
it avoids object fragmentation. However, detection frameworks have difficulty
with long-term tracking of small flying creatures such as birds or insects from a
stationary camera when the object moves well away from the focal plane of the
camera. The object then becomes blurry and detection fails due to the inability
to track individual features of the object. Moreover, birds are inherently difficult
to detect because they are highly articulated, and constitute an extreme example
of a nonrigid, deformable object. To tackle this problem, we take a step back and
investigate how the background subtraction method can be applied in complex
scenarios with dynamic backgrounds and drastic illumination changes.

In motion analysis, background modeling and subtraction play a key role.
The concept behind this approach is to construct a probabilistic representation
of the scene based on the dynamically changing background over time, which
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is used to perform the subtraction from the current input image to extract the
object. One way to model the static background is to perform image averag-
ing over a certain number of frames, which gives a reasonable portrayal of the
mean background image. Ridder [19] proposed a Kalman-filter based approach
to model the background, whereas Wren [30] made use of a Gaussian distribution
to model the background – which turns out to be too simplistic for modeling
real-world scenarios. Stauffer and Grimson [26] proposed a Mixture of Gaussian
(MoG) approach to better model multiple background intensity distributions
that are generated, for example, by ripples on water surface surfaces, and flick-
ering scene illuminations. However, this requires a decision on how many Gaus-
sians to use. To avoid this difficulty inherent in parametric models Elgamal et
al. [7] proposed a non-parametric model that describes background density by
extraction of a histogram of pixel intensities at each pixel location. An inten-
sity value that falls outside the range of the histogram at a particular location
is taken to belong to the object. Both parametric and non-parametric meth-
ods [7, 12, 13, 17] work efficiently only for environments with gradually evolving
changes and small variations. They decline in performance when dealing with
dynamic background scenes such ocean waves, rain, waving trees, moving clouds,
or illumination changes [18].

To overcome the problems with traditional background subtraction methods
for describing dynamic scenes, Weng [29] proposed another variation of back-
ground subtraction – known as the local dependency histogram (LDH). In this
technique, each pixel is modeled as a group of weighted LDHs. Next, the process
of labeling the pixel as the foreground or background is performed by comparing
the new LDH computed in the current frame against its LDH model. Finally, a
fixed threshold value is used to define whether or not a pixel matches its model.
Another prominent technique for background subtraction is kernel density es-
timation [6] to handle scenarios where the background is not completely static
but consists of small motion and illumination changes. For each pixel, this tech-
nique builds a histogram of background values by accumulating a set of real
values sampled from the pixel’s recent history. Then, they estimate the proba-
bility density function with this histogram to determine whether or not a pixel
value of the current frame belongs to the background.

In contrast to all of the above background modeling techniques, which can
only deal with slow changes and require constant updating, our method is capa-
ble of successfully dealing with a variety of rapid background changes without
the need for model updating. Moreover, as will be shown below, this detection
method – based on the decomposition of a logical map – has reduced complex-
ity and computational expense. It outperforms all of the background modeling
techniques described above and allows more time to be allocated to the data
association problem – namely, the problem of connecting the detected locations
in a sequence of frames to create an unambiguous track. Approaches that use
Kalman filtering make assumptions of constant velocity or acceleration, which
are not viable when dealing with objects that are constantly changing their
shapes, speeds, and flight directions. As a consequence, Kalman filtering ap-
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proaches suffer from a greater likelihood of ID swaps when tracking multiple
objects in comparison with our data association approach, which exhibits signif-
icantly better performance.

3 Proposed method

In this section, we describe our multiple object tracking method that is based
on object detection. Our object detection method is based on computing the
inter-frame difference, extraction of a series of intensity levels from the inter-
frame difference image, and determining the centroid for each intensity level.
The determination of the centroids is highly affected by the level of noise present
in the original images that are used to generate the inter-frame difference.

In Section 3.1, we describe our object detection method. In Section 3.2, we
demonstrate how the object locations determined in the sequence of video frames
are connected to produce an accurate and unambiguous track(s).

3.1 Object Detection

The method presented here for object detection uses frame-to-frame image dif-
ferences to detect objects in environments that feature drastic changes in back-
ground and foreground illumination, as well as noise (an example video is avail-
able at https://www.youtube.com/watch?v=9IE8-82agYc ). Unlike traditional
background subtraction methods, initial results are not stored in the commonly
used format of a logic map. Instead, image frame differences are decomposed
into multiple logic maps according to their level of intensity difference. After
this step, separate centers of gravity are formed for each individual logic map.
Due to this separation into individual maps, regular changes in the background
illumination and static noise will automatically be distinguished from the actual
target. Using these centers of gravity, one can simply look for a set of n near-
est neighbors (pixels around these centers of gravity) and compute their shared
center of gravity to define the actual position of the target. As changes in back-
ground illumination, unless they are extremely regular, will be represented by
centers of gravity that can theoretically lie anywhere on the image, the number of
nearest neighbours necessary to successfully track an object is solely dependent
on the level of noise present in the video footage. Due to the random nature of
noise, most of the centers of gravity will most likely lie in locations very different
from that of the image of the object, and noise will, therefore, be effectively
suppressed.

The traditional approach of detecting a moving object is to compute the inter-
frame difference – that is, to subtract the intensity values of pixels in the current
frame (CF) from those in the previous frame (PF). A pixel in the difference image
(FD) is considered to belong to the moving object if its value is higher than a
prescribed threshold (θ) – assuming that intensity variations in the pixels that
constitute the background are small, and below this threshold. If the value of
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the pixel is lower than the threshold, it is considered to belong to the stationary
background. This operation can be expressed as

FD (x, y) = |CF (x, y)− PF (x, y)|

From this we derive a logic map which defines the motion-associated pixels
and stationary background pixels according to

logic map(x, y)

{
1, FD(x,y) ≥ θ Motion region

0, FD(x,y) < θ
(1)

In our approach, we analyze the logic map at multiple intensity levels in
the difference image according to the intensity difference k by using k intensity
difference maps:

logic mapk(x, y)

{
1, FD(x,y) == k

0, otherwise
(2)

(a) (b)

Fig. 1: (a) Logic map for k=20 on raw frames 79 & 78 (b) Centroids of different
logic maps on raw frames 79 & 78.

Next, the centroid is computed for each of these logic maps. The motion of
complex objects (in our case birds) will result in a large number of logic maps.
Using the centroids of these maps, we look for a set of n nearest neighbors and
select their shared center of gravity to best estimate the true position of the
moving object. Figure 1,a shows an example of the logic map for k=20 and
Figure 1,b shows the centroids for all logic maps.

For detecting multiple objects, after decomposing the logic map at multiple
levels, we apply K-means clustering to find the center of gravity of each object.
Here in K-means clustering, the value of K is set to the maximum number of
objects expected to be present in the video footage. Even if K objects are not
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present in a particular frame of the video, we can distinguish the false detections
by applying a constraint on the maximum number of logic maps (max value of
k).

3.2 Data Association

The next challenge is to track the trajectory of the objects reliably, without
interchanging their identities. We pose the data association problem as one of
finding the shortest path in a graph. Thus, we represent the detection hypotheses
from all the frames as a directed acyclic graph (DAG). This graph G = (V,E)
consist of a set of nodes (V ), which are hypothesized detections, and a set of
edges (E), which connect pairs of detections (nodes) and associate each connec-
tion with a cost value. The cost of an edge between two nodes is represented
as a sum of three sub-costs: (a) appearance dissimilarity, (b) internode separa-
tion and (c) change in direction of movement in relation to the previous node
pair. Let v and w be nodes in successive frames connected by an edge e. The
appearance dissimilarity between v and w is computed by (1 − vb.wb) where
vb.wb denotes the dot product of the detection bounding boxes of v and w re-
spectively. (The greater the overlap between the bounding boxes, the lower the
dissimilarity). The cost associated with the change of direction is computed us-

ing
(

tan−1 vby
vbx
− tan−1 wby

wbx

)
by finding the centroids (vb(x, y) and wb(x, y))

of the bounding boxes of vband wb. Assigning edge weights in this manner will
produce low weights when two successive nodes represent the same object, and
large weights when they represent different objects. We also ensure that every
edge E points forward in time (as shown in Figure 2), i.e., the frame number of
the detection v is strictly smaller than that of the detection w.

Fig. 2: Initial graph representation of all possible trajectories

Figure 2 shows an example of an initial representation of a graph that rep-
resents all of the possible trajectories that can be associated with the detected
nodes. The nodes are organized in an ascending order with respect to the frame
number. Each node in a frame is connected to every node in the following frame
with an edge cost as described above. To tackle situations where nodes are miss-
ing, we apply a constraint on the maximum number of frames over which an
object can be absent. If the object does not reappear within that range, it is
considered to have gone out of the camera’s visual field. If it returns within this
critical period, it is assumed that the object was temporarily occluded, and a
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dummy node is added in the location where it was last detected, as shown in
Figure 3. To maintain these criteria, we need to scan the graph from left to right
and ensure that at any level of the graph, the number of incoming edges is equal
to or lower than the number of outgoing edges. If there are more outgoing edges,
this implies that a new object has arrived.

The maximum edge cost for a bird from one frame to next frame is estimated
from the ground truth of our dataset. Based on this maximum edge value, we
remove all the edges between two nodes - where the cost is greater than the
estimated max edge value. This helps to reduce search complexity.

Fig. 3: Dummy node insertion

We then apply Dijkstra’s algorithm to find the shortest path for the graph
of Figure 3. Classically, Dijkstra’s algorithm works on a single source and a
single destination. In our case, no source or destination is defined. Furthermore,
if there are multiple objects, we need to determine a different trajectory for each
of the objects. For this reason, we represent the graph as a time sequence and
consider any node from f1 as the source node. See Figure 4, orange path. For
the destination we do not set any node, rather we continue until the algorithm
reaches a node at the last level, or finds a dead end.

Fig. 4: Selecting the 1st trajectory

Next, we delete all the nodes and every incoming and outgoing edge from
these nodes. The remaining graph is shown in Figure 5. We then select any
node which does not have any incoming edge and repeat the process to succes-
sively determine the trajectories of each of the other moving objects in the video
sequence.

The time complexity of heap implementation of Dijkstra’s algorithm isO(nlogn),
where n is the number of nodes. As it is guaranteed that our graph is not dense
i.e. not all pairs of nodes are connected, the worst-case time complexity of our
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Fig. 5: Removal of nodes and edges

implementation is no more than O(nlogn) for detection of a single trajectory.
However, detection of multiple trajectories requires less time in reality. The rea-
son is evident from the fact that we keep removing the nodes from the original
graph every time a trajectory is detected. This technique progressively reduces
the graph size. Our experiments with a real-world dataset illustrate that our
technique is able to provide results in query time (<1 s) on a standard machine
configuration (8 GB RAM, Ubuntu 16, Intel Core-i7 CPU with 3.40 GHz clock
speed).

4 Experimental Results

We have compared the method of detection and tracking with four other popular
methods available. For this comparison, the ground truth was manually gener-
ated for bird locations (bounding boxes) in 10 videos. The same video dataset was
used to test all 5 methods. Detection was considered to be correct if successive
bounding-boxes overlapped by more than 50%, while tracking multiple objects
was deemed incorrect due to misidentification if one object ID was assigned to
any other object in any other frame during the entire video. The Kalman-filter
based blob detection and tracking routine provided in the MATLAB computer
vision toolbox performs well for detection but suffers from ID swap problems.
The data association technique using a network flow algorithm [20] performs
really well in minimizing ID swaps, but both [20] and [2] perform poorly in re-
lation to object detection. This is due to the nature of our dataset, where the
illumination is poor, and more importantly, whenever the bird flies beyond the
camera focus area, it becomes blurry and any feature extraction algorithms such
as HoG or Deep learning will be compromised. Table 1 reveals that the proposed
method exhibits the best performance with respect to detection accuracy, and
the second-best performance with respect to ID swaps.

5 Conclusion

The contributions of this work focus on two distinct aspects of the problem of
detection and tracking multiple, deformable moving objects. These are (i) detec-
tion using interframe differencing and (ii) trajectory generation using a shortest
path algorithm. The main advantage with weight ordered logic map decomposi-
tion of our detection method is that it does not need any background model to be
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Table 1: Comparison with other methods
Detection Accuracy ID Swaps

Our method 93% 8%
Blob detection & Kalman Filter-based tracking (Matlab) 86% 37%

Background subtraction & FIR filter [5] 79% 19%
Deep Learning & Network Flow [20] 67% 3%

HoG & KLT [2] 65% 24%

updated over time. Thus, it is likely to be computationally much faster than the
standard background modeling techniques. Approaches that use Kalman filter-
ing make assumptions of constant velocity or acceleration, which are not viable
when dealing with flying birds that are avoiding collisions – they are constantly
changing their shapes, speeds, and flight directions. As a consequence, Kalman
filtering approaches suffer from a greater likelihood of ID swaps when track-
ing multiple objects in comparison with our approach, which shows significantly
better performance.
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